Residual stresses of diamond and diamondlike carbon films

نویسندگان

  • E. Liu
  • L. Li
  • J. P. Celis
چکیده

This paper evaluated the internal stresses of different diamond and diamondlike carbon DLC coatings. For the diamond coatings, the stresses were determined using micro-Raman spectroscopy and x-ray diffraction XRD , while the stresses of DLC films were determined with bent plate method. The internal stress was related to the structural properties of the coatings. Direct current plasma jet, combustion flame, and microwave chemical-vapor deposition processes were used to prepare the diamond coatings on the tungsten carbide or molybdenum substrates, while the DLC films were deposited on the silicon wafers with filtered cathodic vacuum arc process. From the Raman spectra of the diamond coatings, the compressive internal stresses were determined, which were related to the microstructure of the coatings. The results from XRD were comparable with those obtained from micro-Raman spectroscopy. Higher compressive residual stresses in the DLC films were noticed, which were also related to their chemical bonding nature as well as their microstructures. © 2005 American Institute of Physics. DOI: 10.1063/1.2071451

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoconductivity in highly tetrahedral diamondlike amorphous carbon

A photoconductive effect is observed in tetrahedral amorphous carbon (ta-C) or amorphous diamond films with a high proportion of sp3 bonding and a structure analogous to amorphous silicon. The spectral response is shown to peak at around 750400 nm and extend into the near UV region. The maximum photoresponse coincides wit.h the optical absorption edge. The quantum efficiency of 300 nm thick fil...

متن کامل

Stress and Moisture Effects on Thin Film Buckling Delamination

Deposition processes control the properties of thin films; they can also introduce high residual stresses, which can be relieved by delamination and fracture. Tungsten films with high 1–2 GPa compressive residual stresses were sputter deposited on top of thin (below 100 nm) copper and diamond-like carbon (DLC) films. Highly stressed films store large amounts of strain energy. When the strain en...

متن کامل

Diamond-like carbon: state of the art

Diamond-like carbon films, amorphous hydrogenated or non-hydrogenated forms of carbon, are metastable amorphous materials characterized by attractive mechanical, optical, electrical, chemical and tribological properties. The films can be prepared at low temperatures by different techniques using a large variety of precursors and can be modified by incorporation of different elements such as N, ...

متن کامل

Structural and Mechanical Properties of Diamond-like Carbon Films Prepared by Pulsed Laser Deposition with Varying Laser Intensity

Diamond-like carbon (DLC) films have been prepared by pulsed laser deposition (PLD) (wavelength 248 nm), ablating highly oriented pyrolytic graphite (HOPG) at room temperature in a vacuum of 10.2 Pa, at fluences between 0.5 and 35 Jcm. Films have been deposited on Si(100) with and without a SiC interlayer. Structural analysis, such as visible and UV Raman, Infrared and Electron Energy Loss (EEL...

متن کامل

Effect of Catalyst on the Growth of Diamond-like Carbon by HFCVD

Diamond like carbon (DLC) film was grown by hot filament chemical vapor deposition (HFCVD)technique. In the present work, we investigated the quality of the DLC films groew on the substratesthat were coated with various metal nanocatalysts (Au and Ni). A combination of CH4/Ar/H2 rendersthe growth of carbon nanostructures technique (diamond like carbon). The utilized samples werecharacterized by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005